R Tutorials for Biomechanical Analysis¶
Comprehensive R Markdown templates and tutorials for research-grade biomechanical analysis using the LocomotionData package.
Research Templates¶
Clinical and Research Workflows¶
Template | Description | Use Case | Features |
---|---|---|---|
Gait Analysis Report | Comprehensive clinical gait analysis | Clinical assessments, patient reports | Automated interpretation, quality metrics |
Intervention Study | Pre/post intervention analysis | Treatment efficacy studies | Statistical comparisons, effect sizes |
Population Comparison | Multi-group comparative analysis | Cohort studies, demographics | ANOVA, post-hoc tests, visualizations |
Longitudinal Study | Time-series and repeated measures | Disease progression, development | Mixed-effects models, trajectories |
Advanced Analysis Templates¶
Template | Description | Features |
---|---|---|
Interactive Research Dashboard | Real-time data exploration | Plotly integration, dynamic filtering |
Automated Quality Assessment | Data validation and outlier detection | Automated flagging, validation reports |
Publication-Ready Analysis | Journal-ready research analysis | APA formatting, statistical reporting |
Learning Tutorials¶
Beginner Level¶
- R Basics for Biomechanics (30 min)
- Loading and Exploring Data (25 min)
- Basic Visualizations (35 min)
- Statistical Analysis Fundamentals (45 min)
- Gait Cycle Analysis (40 min)
- Quality Control Methods (30 min)
Advanced Level¶
- Mixed-Effects Modeling (60 min)
- Functional Data Analysis (75 min)
- Machine Learning Applications (90 min)
- Pathological Gait Analysis (50 min)
- Intervention Assessment (65 min)
- Pediatric Analysis Considerations (45 min)
Interactive Features¶
Plotly Integration¶
All templates include interactive visualizations with:
- Hover Information: Biomechanical context and values
- Zoom and Pan: Detailed examination of patterns
- Dynamic Filtering: Real-time data subset exploration
- 3D Trajectories: Joint angle patterns in 3D space
- Comparative Views: Side-by-side analysis tools
Parameterized Reports¶
Templates support automated generation with:
# Example parameterized report generation
rmarkdown::render("gait_analysis_report.Rmd",
params = list(
dataset = "patient_data.parquet",
subject_id = "PATIENT_001",
control_group = "healthy_controls.parquet",
output_dir = "reports/"
))
Setup and Requirements¶
Installation¶
# Install required packages
install.packages(c(
"rmarkdown", "knitr", "DT", "plotly",
"flexdashboard", "crosstalk", "htmlwidgets",
"lme4", "emmeans", "effectsize", "report"
))
# Load LocomotionData package
devtools::load_all("path/to/locomotion-data-standardization/source/lib/r")
Template Usage¶
- Choose Template: Select appropriate research template
- Configure Parameters: Set dataset paths and analysis options
- Knit Report: Generate HTML or PDF output
- Review Results: Automated interpretation and recommendations
Data Requirements¶
- Phase-indexed data: 150 points per gait cycle
- Standard naming: Follow LocomotionData conventions
- Required columns: subject, task, phase
- File formats: Parquet (preferred) or CSV
Key Features¶
Automated Analysis Pipeline¶
- Quality Assessment: Automatic outlier detection and validation
- Statistical Analysis: Appropriate tests based on data structure
- Effect Size Calculation: Clinical significance metrics
- Result Interpretation: AI-assisted biomechanical insights
Professional Reporting¶
- Publication Standards: APA formatting and statistical reporting
- Clinical Summaries: Patient-friendly result interpretation
- Executive Reports: Research summary for stakeholders
- Appendix Generation: Detailed technical information
Research Reproducibility¶
- Version Control: Template versioning and change tracking
- Parameter Documentation: Complete analysis configuration
- Data Provenance: Source data tracking and validation
- Code Transparency: Full analysis code inclusion
Quick Start¶
1. Clinical Gait Analysis¶
# Generate a clinical gait report
rmarkdown::render("gait_analysis_report.Rmd",
params = list(
patient_data = "patient_001.parquet",
reference_data = "normative_database.parquet"
))
2. Research Study Analysis¶
# Analyze intervention study
rmarkdown::render("intervention_study_template.Rmd",
params = list(
pre_data = "baseline_measurements.parquet",
post_data = "followup_measurements.parquet",
intervention = "gait_training"
))
3. Interactive Dashboard¶
# Create interactive research dashboard
rmarkdown::render("interactive_dashboard_template.Rmd",
output_format = "flexdashboard::flex_dashboard",
params = list(
datasets = c("study1.parquet", "study2.parquet"),
interactive_mode = TRUE
))
Support Resources¶
Documentation¶
Troubleshooting¶
Examples¶
Next Steps¶
- Start with: Gait Analysis Report Template
- Learn more: R Basics for Biomechanics
- Advanced: Interactive Dashboard
Ready to analyze your biomechanical data with professional R Markdown reports!